Peer-Reviewed Journal Details
Mandatory Fields
O'Dowd, C,Ceburnis, D,Ovadnevaite, J,Bialek, J,Stengel, DB,Zacharias, M,Nitschke, U,Connan, S,Rinaldi, M,Fuzzi, S,Decesari, S,Facchini, MC,Marullo, S,Santoleri, R,Dell'Anno, A,Corinaldesi, C,Tangherlini, M,Danovaro, R
2015
October
Scientific Reports
Connecting marine productivity to sea-spray via nanoscale biological processes: Phytoplankton Dance or Death Disco?
Published
()
Optional Fields
AEROSOL MASS-SPECTROMETER ORGANIC-MATTER ENRICHMENT AQUATIC ECOSYSTEMS VIRAL-INFECTION VIRUSES BLOOM SURFACE LYSIS OCEAN MICROGELS
5
Bursting bubbles at the ocean-surface produce airborne salt-water spray-droplets, in turn, forming climate-cooling marine haze and cloud layers. The reflectance and ultimate cooling effect of these layers is determined by the spray's water-uptake properties that are modified through entrainment of ocean-surface organic matter (OM) into the airborne droplets. We present new results illustrating a clear dependence of OM mass-fraction enrichment in sea spray (OMss) on both phytoplankton-biomass, determined from Chlorophyll-a (Chl-alpha) and Net Primary Productivity (NPP). The correlation coefficient for OMss as a function of Chl-alpha increased form 0.67 on a daily timescale to 0.85 on a monthly timescale. An even stronger correlation was found as a function of NPP, increasing to 0.93 on a monthly timescale. We suggest the observed dependence is through the demise of the bloom, driven by nanoscale biological processes (such as viral infections), releasing large quantities of transferable OM comprising cell debris, exudates and other colloidal materials. This OM, through aggregation processes, leads to enrichment in sea-spray, thus demonstrating an important coupling between biologically-driven plankton bloom termination, marine productivity and sea-spray modification with potentially significant climate impacts.
10.1038/srep14883
Grant Details
Publication Themes