Peer-Reviewed Journal Details
Mandatory Fields
Rooney GE, McMahon SS, Ritter T, Garcia Y, Moran C, Madigan NN, Fl├╝gel A, Dockery P, O'Brien T, Howard L, Windebank AJ, Barry FP
Tissue Engineering
Neurotrophic factor-expressing mesenchymal stem cells survive transplantation into the contused spinal cord without differentiating into neural cells.
Optional Fields
The aim of this study was to assess the feasibility of transplanting mesenchymal stem cells (MSCs), genetically modified to express glial-derived neurotrophic factor (GDNF), to the contused rat spinal cord, and to subsequently assess their neural differentiation potential. MSCs expressing green fluorescent protein were transduced with a retroviral vector to express the neurotrophin GDNF. The transduction protocol was optimized by using green fluorescent protein-expressing retroviral constructs; approximately 90% of MSCs were transduced successfully after G418 selection. GDNF-transduced MSCs expressed the transgene and secreted growth factor into the media (approximately 12 ng/500,000 cells secreted into the supernatant 2 weeks after transduction). Injuries were established using an impactor device, which applied a given, reproducible force to the exposed spinal cord. GDNF-expressing MSCs were transplanted rostral and caudal to the site of injury. Spinal cord sections were analyzed 2 and 6 weeks after transplantation. We demonstrate that GDNF-transduced MSCs engraft, survive, and express the therapeutic gene up to 6 weeks posttransplantation, while maintaining an undifferentiated phenotype. In conclusion, transplanted MSCs have limited capacity for the replacement of neural cells lost as a result of a spinal cord trauma. However, they provide excellent opportunities for local delivery of neurotrophic factors into the injured tissue. This study underlines the therapeutic benefits associated with cell transplantation and provides a good example of the use of MSCs for gene delivery.
Grant Details
Publication Themes