Other Publication Details
Mandatory Fields
Reviews
Watson, L,Elliman, SJ,Coleman, CM
2014
April
From isolation to implantation: a concise review of mesenchymal stem cell therapy in bone fracture repair
Published
1
Optional Fields
MARROW STROMAL CELLS TISSUE-ENGINEERED BONE PROGENITOR CELLS MOUSE MODEL OSTEOGENESIS IMPERFECTA STEM/PROGENITOR CELLS FUNCTIONAL BONE IN-VIVO DEFECTS REGENERATION
Compromised bone-regenerating capability following a long bone fracture is often the result of reduced host bone marrow (BM) progenitor cell numbers and efficacy. Without surgical intervention, these malunions result in mobility restrictions, deformities, and disability. The clinical application of BM-derived mesenchymal stem cells (MSCs) is a feasible, minimally invasive therapeutic option to treat non-union fractures. This review focuses on novel, newly identified cell surface markers in both the mouse and human enabling the isolation and purification of osteogenic progenitor cells as well as their direct and indirect contributions to fracture repair upon administration. Furthermore, clinical success to date is summarized with commentary on autologous versus allogeneic cell sources and the methodology of cell administration. Given our clinical success to date in combination with recent advances in the identification, isolation, and mechanism of action of MSCs, there is a significant opportunity to develop improved technologies for defining therapeutic MSCs and potential to critically inform future clinical strategies for MSC-based bone regeneration.
10.1186/scrt439
Grant Details
Publication Themes