Peer-Reviewed Journal Details
Mandatory Fields
Bialek, J,Osto, MD,Vaattovaara, P,Decesari, S,Ovadnevaite, J,Laaksonen, A,O'Dowd, C
2014
January
Atmospheric Chemistry And Physics
Hygroscopic and chemical characterisation of Po Valley aerosol
Published
()
Optional Fields
POSITIVE MATRIX FACTORIZATION SECONDARY ORGANIC AEROSOLS DIFFERENTIAL MOBILITY ANALYZER SOURCE APPORTIONMENT MASS-SPECTROMETER SIZE DISTRIBUTIONS PARTICULATE MATTER LIGHT-SCATTERING PARTICLES GROWTH
14
1557
1570
Continental summer-time aerosol in the Italian Po Valley was characterised in terms of hygroscopic properties and the influence of chemical composition therein. Additionally, the ethanol affinity of particles was analysed. The campaign-average minima in hygroscopic growth factors (HGFs, at 90% relative humidity) occurred just before and during sunrise from 03: 00 to 06: 00 LT (all data are reported in the local time), but, more generally, the hygroscopicity during the whole night is very low, particularly in the smaller particle sizes. The average HGFs recorded during the low HGF period were in a range from 1.18 (for the smallest, 35nm particles) to 1.38 (for the largest, 165 nm particles). During the day, the HGF gradually increased to achieve maximum values in the early afternoon hours 12: 0015: 00, reaching 1.32 for 35 nm particles and 1.46 for 165 nm particles. Two contrasting case scenarios were encountered during the measurement period: Case 1 was associated with westerly air flow moving at a moderate pace and Case 2 was associated with more stagnant, slower moving air from the north-easterly sector. Case 1 exhibited weak diurnal temporal patterns, with no distinct maximum or minimum in HGF or chemical composition, and was associated with moderate non-refractory aerosol mass concentrations (for 50% size cut at 1 mu) of the order of 4.5 mu g m(-3). For Case 1, organics contributed typically 50% of the mass. Case 2 was characterised by >9.5 mu g m(-3) total non-refractory mass (60% and the "barely hygroscopic" growth factor fraction (1.1-1.2) increased from less than 2% at noon to 30% at midnight. Surprisingly, the lowest HGFs occurred for the period when nitrate mass reached peak concentrations (Case 2). We hypothesised that the low HGFs of nitrate-containing particles can be explained by a) an organic coating suppressing the wateruptake, and/or by b) the existence of nitrates in a less hygroscopic state, e. g. as organic nitrates.The latter hypothesis allows us to explain also the reduced OGFs observed during the early morning hours (before dawn) when nitrate concentrations peaked, based on the evidence that organic nitrates have significant lower ethanol affinity than other SV-OOA compounds.
DOI 10.5194/acp-14-1557-2014
Grant Details
Publication Themes