Peer-Reviewed Journal Details
Mandatory Fields
Rudkin JK, Edwards AM, Bowden MG, Brown EL, Pozzi C, Waters EM, Chan WC, Williams P, O'Gara JP, Massey RC
Journal Of Infectious Diseases
Methicillin resistance reduces the virulence of healthcare-associated methicillin-resistant Staphylococcus aureus by interfering with the agr quorum sensing system.
Optional Fields
The difficulty in successfully treating infections caused by methicillin-resistant Staphylococcus aureus (MRSA) has led to them being referred to as highly virulent or pathogenic. In our study of one of the major healthcare-associated MRSA (HA-MRSA) clones, we show that expression of the gene responsible for conferring methicillin resistance (mecA) is also directly responsible for reducing the ability of HA-MRSA to secrete cytolytic toxins. We show that resistance to methicillin induces changes in the cell wall, which affects the bacteria's agr quorum sensing system. This leads to reduced toxin expression and, as a consequence, reduced virulence in a murine model of sepsis. This diminished capacity to cause infection may explain the inability of HA-MRSA to move into the community and help us understand the recent emergence of community-associated MRSA (CA-MRSA). CA-MRSA typically express less penicillin-binding protein 2a (encoded by mecA), allowing them to maintain full virulence and succeed in the community environment.
Grant Details
Publication Themes