Other Publication Details
Mandatory Fields
Reviews
Mahalingam, D,Szegezdi, E,Keane, M,de Jong, S,Samali, A
2009
May
TRAIL receptor signalling and modulation: Are we on the right TRAIL?
Published
1
Optional Fields
Apoptosis Cancer DR4 DR5 DcR1 DcR2 TRAIL Clinical trials Receptor-selective TRAIL variants Agonistic antibodies APOPTOSIS-INDUCING LIGAND TUMOR-NECROSIS-FACTOR HISTONE DEACETYLASE INHIBITOR ACUTE-LEUKEMIA CELLS COLON-CANCER CELLS CHRONIC LYMPHOCYTIC-LEUKEMIA SMALL-MOLECULE ANTAGONISTS SULFIDE-INDUCED APOPTOSIS HUMAN MONOCLONAL-ANTIBODY HUMAN-MELANOMA CELLS
Tumour necrosis factor-related apoptosis-inducing ligand or Apo2 ligand (TRAIL/Apo2L) is a member of the turnout necrosis factor (TNF) superfamily of cytokines that induces apoptosis upon binding to its death domain-containing transmembrane receptors, death receptors 4 and 5 (DR4, DR5). Importantly, TRAIL preferentially induces apoptosis in cancer cells while exhibiting little or no toxicity in normal cells. To date, research has focused on the mechanism of apoptosis induced by TRAIL and the processes involved in the development of TRAIL resistance. TRAIL-resistant tumours can be re-sensitized to TRAIL by a combination of TRAIL with chemotherapeutics or irradiation. Studies suggest that in many cancer cells only one of the two death-inducing TRAIL receptors is functional. These findings as well as the aim to avoid decoy receptor-mediated neutralization of TRAIL led to the development of receptor-specific TRAIL variants and agonistic antibodies. These molecules are predicted to be more potent than native TRAIL in vivo and may be suitable for targeted treatment of particular tumours. This review focuses on the current status of TRAIL receptor-targeting for cancer therapy, the apoptotic signalling pathway induced by TRAIL receptors, the prognostic implications of TRAIL receptor expression and modulation of TRAIL sensitivity of turnout cells by combination therapies. The mechanisms of TRAIL resistance and the potential measures that can be taken to overcome them are also addressed. Finally, the status of clinical trials of recombinant TRAIL and DR4-/DR5-specific agonistic antibodies as well as the pre-clinical studies of receptor-selective TRAIL variants is discussed including the obstacles facing the use of these molecules as anti-cancer therapeutics. (C) 2008 Elsevier Ltd. All rights reserved.
280
288
DOI 10.1016/j.ctrv.2008.11.006
Grant Details
Publication Themes