Peer-Reviewed Journal Details
Mandatory Fields
Wang, YY;Zhan, WH;Ren, Q;Cheng, SS;Wang, JN;Ma, XY;Zhang, CS;Wang, YS
2019
November
Science Of The Total Environment
Biodegradation of di-(2-ethylhexyl) phthalate by a newly isolated Gordonia sp. and its application in the remediation of contaminated soils
Published
()
Optional Fields
N-BUTYL PHTHALATE DI(2-ETHYLHEXYL) PHTHALATE DI-2-ETHYLHEXYL PHTHALATE COMPLETE DEGRADATION AGRICULTURAL SOILS STRAIN ESTERS DEHP BIOREMEDIATION IDENTIFICATION
689
645
651
A bacterial strain (Gurduniu sp. Lff) capable of efficiently degrading di-(2-elthylhexyl) phthalate (DEHP) was isolated from river sludge. The optimal pH and temperature for the degradation of DEHP by Lff were 7.0 and 35 degrees C, respectively. Lff could degrade high concentrations of DEHP (100-2000 mg/L) with a degradation efficiency of over 91.43%. The DEHP degradation curves fit well with first-order kinetics, with a half-life ranging from 0.598 to 0.746 d. Substrate inhibition analyses showed that the maximum specific degradation Fate, half-saturation constant and inhibition constant were 0.8 d(-1), 45.8 mg/L. and 462.18 mg/L, respectively. A detailed biodegradation pathway of DEHP was proposed based on GC-MS analysis. Furthermore, Lff could also efficiently degrade DEHP in soils. DEHP or DEHP plus Lff changed the bacterial community in soils, and Lff accelerated the shaping of the bacterial community. To the best of our knowledge, this study is the first to perform a detailed investigation into the biodegradation of DEHP in soil by Gordonia sp. and its effect on the soil bacterial community. These results suggest that Lff is an ideal candidate for the bioremediation of DEHP-contaminated environments. (C) 2019 Elsevier B.V. All rights reserved.
0048-9697
10.1016/j.scitotenv.2019.06.459
Grant Details
Publication Themes