Peer-Reviewed Journal Details
Mandatory Fields
Archer, A,Benbow, W,Bird, R,Brose, R,Buchovecky, M,Bugaev, V,Cui, W,Danie, MK,Falcone, A,Feng, Q,Finley, JP,Flinders, A,Fortson, L,Furniss, A,Gillanders, GH,Huttens, M,Hanna, D,Hervet, O,Holder, J,Hughes, G,Humensky, TB,Johnson, CA,Kaaret, P,Kar, P,Kelley-Hoskins, N,Kieda, D,Krause, M,Krennrich, F,Kumar, S,Lang, MJ,Lin, TTY,McArthur, S,Moriarty, P,Mukherjee, R,Nieto, D,O'Brien, S,Ong, RA,Otte, AN,Park, N,Petrashyk, A,Pohl, M,Popkow, A,Pueschel, E,Quinn, J,Ragan, K,Reynold, PT,Richards, GT,Roache, E,Rulten, C,Sadeh, I,Sembroski, GH,Shahinyan, K,Tyler, J,Wakely, SP,Weiner, OM,Weinstein, A,Wells, RM,Wilcox, P,Wilhelm, A,Williams, DA,Brisken, WF,Pontrelli, P,VERITAS Collaboration
Astrophysical Journal
HESS J1943+213: An Extreme Blazar Shining through the Galactic Plane
Optional Fields
astroparticle physics BL Lacertae objects: individual (HESS J1943+213, VER J1943+213) galaxies: active galaxies: jets galaxies: nuclei gamma rays: galaxies BL-LAC OBJECTS X-RAY RELATIVISTIC JETS LACERTAE OBJECTS COMPLETE SAMPLE GAMMA-RAYS RADIO JETS TELESCOPE RADIATION EMISSION
HESS J1943+213 is a very high energy (VHE; > 100 GeV) gamma-ray source in the direction of the Galactic plane. Studies exploring the classification of the source are converging toward its identification as an extreme synchrotron BL Lac object. Here we present 38 hr of VERITAS observations of HESS J1943+213 taken over 2 yr. The source is detected with a significance of similar to 20 standard deviations, showing a remarkably stable flux and spectrum in VHE gamma-rays. Multifrequency Very Long Baseline Array (VLBA) observations of the source confirm the extended, jet-like structure previously found in the 1.6 GHz band with the European VLBI Network and detect this component in the 4.6 and 7.3 GHz bands. The radio spectral indices of the core and the jet and the level of polarization derived from the VLBA observations are in a range typical for blazars. Data from VERITAS, Fermi-LAT, Swift-XRT, the FLWO 48 '' telescope, and archival infrared and hard X-ray observations are used to construct and model the spectral energy distribution (SED) of the source with a synchrotron self-Compton model. The well-measured gamma-ray peak of the SED with VERITAS and Fermi-LAT provides constraining upper limits on the source redshift. Possible contribution of secondary gamma-rays from ultra-high-energy cosmic-ray-initiated electromagnetic cascades to the gamma-ray emission is explored, finding that only a segment of the VHE spectrum can be accommodated with this process. A variability search is performed across X-ray and gamma-ray bands. No statistically significant flux or spectral variability is detected.
Grant Details
Publication Themes