Other Publication Details
Mandatory Fields
Reviews
El Amri, M;Fitzgerald, U;Schlosser, G
2018
May
MARCKS and MARCKS-like proteins in development and regeneration
Published
1
Optional Fields
C-KINASE SUBSTRATE NEURAL-TUBE DEFECTS DEVELOPING CEREBRAL-CORTEX ABNORMAL BRAIN-DEVELOPMENT NERVOUS-SYSTEM DEVELOPMENT HUMAN NEUROBLASTOMA-CELLS FILAMENT CROSS-LINKING STRESS FIBER FORMATION GROWTH CONE ADHESION HUMAN NEURONAL CELLS
Background: The Myristoylated Alanine-Rich C-kinase Substrate (MARCKS) and MARCKS-like protein 1 (MARCKSL1) have a wide range of functions, ranging from roles in embryonic development to adult brain plasticity and the inflammatory response. Recently, both proteins have also been identified as important players in regeneration. Upon phosphorylation by protein kinase C (PKC) or calcium-dependent calmodulin-binding, MARCKS and MARCKSL1 translocate from the membrane into the cytosol, modulating cytoskeletal actin dynamics and vesicular trafficking and activating various signal transduction pathways. As a consequence, the two proteins are involved in the regulation of cell migration, secretion, proliferation and differentiation in many different tissues. Main body: Throughout vertebrate development, MARCKS and MARCKSL1 are widely expressed in tissues derived from all germ layers, with particularly strong expression in the nervous system. They have been implicated in the regulation of gastrulation, myogenesis, brain development, and other developmental processes. Mice carrying loss of function mutations in either Marcks or Marcksl1 genes die shortly after birth due to multiple deficiencies including detrimental neural tube closure defects. In adult vertebrates, MARCKS and MARCKL1 continue to be important for multiple regenerative processes including peripheral nerve, appendage, and tail regeneration, making them promising targets for regenerative medicine. Conclusion: This review briefly summarizes the molecular interactions and cellular functions of MARCKS and MARCKSL1 proteins and outlines their vital roles in development and regeneration.
LONDON
BIOMED CENTRAL LTD
1021-7770
10.1186/s12929-018-0445-1
Grant Details
Publication Themes