Peer-Reviewed Journal Details
Mandatory Fields
Sheridan, WS;Duffy, GP;Murphy, BP
2013
December
Tissue Engineering Part C-Methods
Optimum Parameters for Freeze-Drying Decellularized Arterial Scaffolds
Published
WOS: 5 ()
Optional Fields
BLOOD-VESSELS MECHANICAL-PROPERTIES EXTRACELLULAR-MATRIX TISSUE CELLS COLLAGEN CRYOPRESERVATION RECONSTRUCTION MULTICENTER ALLOGRAFTS
19
981
990
Decellularized arterial scaffolds have achieved success in advancing toward clinical use as vascular grafts. However, concerns remain regarding long-term preservation and sterilization of these scaffolds. Freeze drying offers a means of overcoming these concerns. In this study, we investigated the effects of various freeze-drying protocols on decellularized porcine carotid arteries and consequently, determined the optimum parameters to fabricate a stable, preserved scaffold with unaltered mechanical properties. Freeze drying by constant slow cooling to two final temperatures ((T-f), -10 degrees C and -40 degrees C) versus instant freezing was investigated by histological examination and mechanical testing. Slow cooling to T-f= -10 degrees C produced a stiffer and less distensible response than the non freeze-dried scaffolds and resulted in disruption to the collagen fibers. The mechanical response of T-f= -40 degrees C scaffolds demonstrated disruption to the elastin network, which was confirmed with histology. Snap freezing scaffolds in liquid nitrogen and freeze drying to T-f= -40 degrees C with a precooled shelf at -60 degrees C produced scaffolds with unaltered mechanical properties and a histology resembling non-freeze-dried scaffolds. The results of this study demonstrate the importance of optimizing the nucleation and ice crystal growth/size to ensure homogenous drying, preventing extracellular matrix disruption and subsequent inferior mechanical properties. This new manufacturing protocol creates the means for the preservation and sterilization of decellularized arterial scaffolds while simultaneously maintaining the mechanical properties of the tissue.
1937-3384
10.1089/ten.tec.2012.0741
Grant Details
Publication Themes