Peer-Reviewed Journal Details
Mandatory Fields
Flynn CR, Brophy CM, Furnish EJ, Komalavilas P, Tessier D, Thresher J, Joshi L
2005
May
Journal Of Applied Physiology
Transduction of phosphorylated heat shock-related protein 20, HSP20, prevents vasospasm of human umbilical artery smooth muscle.
Published
Optional Fields
98
5
1836
1845
Activation of cyclic nucleotide-dependent signaling pathways inhibits agonist-induced contraction of most vascular smooth muscles except human umbilical artery smooth muscle (HUASM). This impaired vasorelaxation may contribute to complications associated with preeclampsia, intrauterine growth restriction, and preterm delivery. Cyclic nucleotide-dependent signaling pathways converge at the phosphorylation of the small heat shock-related protein HSP20, causing relaxation of vascular smooth muscle. We produced recombinant proteins containing a protein transduction domain linked to HSP20 (rTAT-HSP20). Pretreatment of HUASM with in vitro phosphorylated rTAT-HSP20 (rTAT-pHSP20) significantly inhibited serotonin-induced contraction, without a decrease in myosin light chain phosphorylation. rTAT-pHSP20 remained phosphorylated upon transduction into isolated HUASM as demonstrated by two-dimensional gel electrophoresis. Transduction of peptide analogs of phospho-HSP20 containing the phosphorylation site on HSP20 and phosphatase-resistant mimics of the phosphorylation site (S16E) also inhibited HUASM contraction. These data suggest that impaired relaxation of HUASM may result from decreased levels of phosphorylated HSP20. Protein transduction can be used to restore intracellular expression levels and the associated physiological response. Transduction of posttranslationally modified substrate proteins represents a proteomic-based therapeutic approach that may be particularly useful when the expression of downstream substrate proteins is downregulated.
10.1152/japplphysiol.01043.2004
Grant Details
Publication Themes