Peer-Reviewed Journal Details
Mandatory Fields
Garcia, Y,Hemantkumar, N,Collighan, R,Griffin, M,Rodriguez-Cabello, JC,Pandit, A
2009
April
Tissue Engineering Part A
In Vitro Characterization of a Collagen Scaffold Enzymatically Cross-Linked with a Tailored Elastin-like Polymer
Published
()
Optional Fields
EXPRESSED HUMAN ELASTIN HUMAN SKIN FIBROBLASTS VASCULAR GRAFTS ELASTOMERIC POLYPENTAPEPTIDES SECONDARY STRUCTURE CELL-PROLIFERATION TISSUE-RESPONSE CALCIFICATION POLYPEPTIDES PEPTIDES
15
887
899
Collagen, the main structural component of the extracellular matrix (ECM), provides tensile stiffness to different structures and organs against rupture. However, collagen tissue-engineered implants are hereto still lacking in mechanical strength. Attempts to create stiffer scaffolds have resulted in increased brittleness of the material, reducing the versatility of the original component. The hypothesis behind this research is that the introduction of an elastic element in the scaffold will enhance the mechanical properties of the collagen-based scaffolds, as elastin does in the ECM to prevent irreversible deformation. In this study, an elastin-like polymer (ELP) designed and synthesized using recombinant DNA methodology is used with the view to providing increased proteolytic resistance and increased functionality to the scaffolds by carrying specific sequences for microbial transglutaminase cross-linking, endothelial cell adhesion, and drug delivery. Evaluation of the effects that cross-linking ELP-collagen has on the physicochemical properties of the scaffold such as porosity, presence of cross-linking, thermal behavior, and mechanical strength demonstrated that the introduction of enzymatically resistant covalent bonds between collagen and ELP increases the mechanical strength of the scaffolds in a dose-dependent manner without significantly affecting the porosity or thermal properties of the original scaffold. Importantly, the scaffolds also showed selective behavior, in a dose (ELP)-dependent manner toward human umbilical vein endothelial cells and smooth muscle cells when compared to fibroblasts.
DOI 10.1089/ten.tea.2008.0104
Grant Details
Publication Themes