Peer-Reviewed Journal Details
Mandatory Fields
Horie, S.,Laffey, J. G.
2016
F1000resf1000res
Recent insights: mesenchymal stromal/stem cell therapy for acute respiratory distress syndrome
Published
()
Optional Fields
5
Acute respiratory distress syndrome (ARDS) causes respiratory failure, which is associated with severe inflammation and lung damage and has a high mortality and for which there is no therapy. Mesenchymal stromal/stem cells (MSCs) are adult multi-progenitor cells that can modulate the immune response and enhance repair of damaged tissue and thus may provide a therapeutic option for ARDS. MSCs demonstrate efficacy in diverse in vivo models of ARDS, decreasing bacterial pneumonia and ischemia-reperfusion-induced injury while enhancing repair following ventilator-induced lung injury. MSCs reduce the pro-inflammatory response to injury while augmenting the host response to bacterial infection. MSCs appear to exert their effects via multiple mechanisms-some are cell interaction dependent whereas others are paracrine dependent resulting from both soluble secreted products and microvesicles/exosomes derived from the cells. Strategies to further enhance the efficacy of MSCs, such as by overexpressing anti-inflammatory or pro-repair molecules, are also being investigated. Encouragingly, early phase clinical trials of MSCs in patients with ARDS are under way, and experience with these cells in trials for other diseases suggests that the cells are well tolerated. Although considerable translational challenges, such as concerns regarding cell manufacture scale-up and issues regarding cell potency and batch variability, must be overcome, MSCs constitute a highly promising potential therapy for ARDS.Acute respiratory distress syndrome (ARDS) causes respiratory failure, which is associated with severe inflammation and lung damage and has a high mortality and for which there is no therapy. Mesenchymal stromal/stem cells (MSCs) are adult multi-progenitor cells that can modulate the immune response and enhance repair of damaged tissue and thus may provide a therapeutic option for ARDS. MSCs demonstrate efficacy in diverse in vivo models of ARDS, decreasing bacterial pneumonia and ischemia-reperfusion-induced injury while enhancing repair following ventilator-induced lung injury. MSCs reduce the pro-inflammatory response to injury while augmenting the host response to bacterial infection. MSCs appear to exert their effects via multiple mechanisms-some are cell interaction dependent whereas others are paracrine dependent resulting from both soluble secreted products and microvesicles/exosomes derived from the cells. Strategies to further enhance the efficacy of MSCs, such as by overexpressing anti-inflammatory or pro-repair molecules, are also being investigated. Encouragingly, early phase clinical trials of MSCs in patients with ARDS are under way, and experience with these cells in trials for other diseases suggests that the cells are well tolerated. Although considerable translational challenges, such as concerns regarding cell manufacture scale-up and issues regarding cell potency and batch variability, must be overcome, MSCs constitute a highly promising potential therapy for ARDS.
2046-1402 (Print) 2046-14
Grant Details
Publication Themes