We find the strain energy function for isotropic incompressible solids exhibiting a linear relationship between shear stress and amount of shear, and between torque and amount of twist, when subject to large simple shear or torsion deformations. It is inclusive of the well-known neo-Hookean and the Mooney–Rivlin models, but also can accommodate other terms, as certain arbitrary functions of the principal strain invariants. Effectively, the extra terms can be used to account for several non-linear effects observed experimentally but not captured by the neo-Hookean and Mooney–Rivlin models, such as strain stiffening effects due to limiting chain extensibility.