Peer-Reviewed Journal Details
Mandatory Fields
Dzhoyashvili NA;Thompson K;Gorelov AV;Rochev YA;
2016
October
Acs Applied Materials & Interfaces
Film Thickness Determines Cell Growth and Cell Sheet Detachment from Spin-Coated Poly(N-Isopropylacrylamide) Substrates.
Published
WOS: 8 ()
Optional Fields
Poly(N-isopropylacrylamide) (pNIPAm) is widely used to fabricate thermoresponsive surfaces for cell sheet detachment. Many complex and expensive techniques have been employed to produce pNIPAm substrates for cell culture. The spin-coating technique allows rapid fabrication of pNIPAm substrates with high reproducibility and uniformity. In this study, the dynamics of cell attachment, proliferation, and function on non-cross-linked spin-coated pNIPAm films of different thicknesses were investigated. The measurements of advancing contact angle revealed increasing contact angles with increasing film thickness. Results suggest that more hydrophilic 50 and 80 nm thin pNIPAm films are more preferable for cell sheet fabrication, whereas more hydrophobic 300 and 900 nm thick spin-coated pNIPAm films impede cell attachment. These changes in cell behavior were correlated with changes in thickness and hydration of pNIPAm films. The control of pNIPAm film thickness using the spin-coating technique offers an effective tool for cell sheet-based tissue engineering.
1944-8252
10.1021/acsami.6b09711
Grant Details
Publication Themes