Peer-Reviewed Journal Details
Mandatory Fields
Hardiman, M,Vaughan, TJ,McCarthy, CT
2016
July
Polymer Testing
The effects of pile-up, viscoelasticity and hydrostatic stress on polymer matrix nanoindentation
Published
()
Optional Fields
Nanoindentation Pile-up Viscoelasticity Hydrostatic stress SENSING INDENTATION EXPERIMENTS MECHANICAL-PROPERTIES NANOSCALE CHARACTERIZATION FIBER CONSTRAINT CONTACT AREA COMPOSITES INTERPHASE HARDNESS FILMS THICKNESS
52
157
166
It is well known that a clear disparity exists between the elastic modulus determined using macroscopic tensile testing of polymers and those determined using nanoindentation, with indentation moduli generally overestimating the elastic modulus significantly. The effects of pile-up, viscoelasticity and hydrostatic stress on the indentation modulus of an epoxy matrix material are investigated. An analysis of residual impressions using scanning probe microscopy indicates that material pile-up is insignificant. Viscous effects are negated by increasing the time on the sample during the loading/hold segment phases of the indentation test, and by calculating the contact stiffness at a drift-insensitive point of the unloading curve. Removing the effects of viscous deformation reduces the modulus by 10-13%, while also significantly improving the non-liner curve fitting procedure of the Oliver and Pharr method. The effect of hydrostatic stress on the indentation modulus is characterised using relations from literature, reducing the measured property by 16%. Once viscous and hydrostatic stress effects are accounted for, the indentation modulus of the material compares very well with the bulk tensile modulus, and modifications to standard indentation protocols for polymers are proposed. (C) 2016 The Authors. Published by Elsevier Ltd.
10.1016/j.polymertesting.2016.04.003
Grant Details
Publication Themes