Peer-Reviewed Journal Details
Mandatory Fields
Sipila, M,Lehtipalo, K,Attoui, M,Neitola, K,Petaja, T,Aalto, PP,O'Dowd, CD,Kulmala, M
2009
September
Aerosol Science And Technology
Laboratory Verification of PH-CPC's Ability to Monitor Atmospheric Sub-3 nm Clusters
Published
()
Optional Fields
CONDENSATION NUCLEUS COUNTER PARTICLE-SIZE MAGNIFIER AEROSOL-PARTICLES NUCLEATION GROWTH NANOPARTICLES DISTRIBUTIONS UF-02PROTO VAPORS RATES
43
126
135
Gas-to-particle conversion takes readily place in the atmosphere. Detecting the initial clusters, which act as embryos for the newly formed particles, is beyond traditional aerosol instrumentation. Charged atmospheric clusters can be measured with air ion spectrometers, but typical state-of-the-art condensation particle counters, which detect both neutral and charged clusters, only see particles larger than 2.5 nm in diameter. In this study we present a modified pulse-height condensation particle counter (PH-CPC) and confirm by laboratory verification that it is capable of detecting charged clusters with electrical mobility equivalent diameter down to similar to 1 nm. We show how the detection efficiency and the pulse heights depend on the calibration particle size, polarity and composition. The effect of butanol supersaturation on the PH-CPC counting efficiency is also discussed. Furthermore, we developed an inversion method for the data to obtain true particle size distribution from the measurement signal.
DOI 10.1080/02786820802506227
Grant Details
Publication Themes