Peer-Reviewed Journal Details
Mandatory Fields
Hogan, MJ,Carolan, L,Roche, RAP,Dockree, PM,Kaiser, J,Bunting, BP,Robertson, IH,Lawlor, BA
2006
November
Brain Research
Electrophysiological and information processing variability predicts memory decrements associated with normal age-related cognitive decline and Alzheimer's disease (AD)
Published
Altmetric: 1WOS: 21 ()
Optional Fields
event-related potential variability Alzheimer's aging memory EVENT-RELATED POTENTIALS REACTION-TIME INTRAINDIVIDUAL VARIABILITY PREFRONTAL CORTEX CLINICAL UTILITY P300 LATENCY DEMENTIA PERFORMANCE TASK ATTENTION
1119
215
226
Recent theoretical models of cognitive aging have implicated increased intra-individual variability as a critical marker of decline. The current study examined electrophysiological and information processing variability and memory performance in normal younger and older controls, and older adults with Alzheimer's disease (AD). It was hypothesized that higher levels of variability would be indicative of age-related and disease-related memory deficits. Results indicated both implicit and explicit memory deficits associated with AD. Consistent with previous research, behavioral speed and variability emerged as sensitive to age- and disease-related change. Amplitude variability of P3 event-related potentials was a unique component of electrophysiological activity and accounted for significant variance in reaction time (RT) mean and RT standard deviation, which in turn accounted for significant variance in memory function. Results are discussed in light of theoretical and applied issues in the field of cognitive aging. (c) 2006 Elsevier B.V. All rights reserved.
10.1016/j.brainres.2006.08.075
Grant Details
Publication Themes